副教授

龚淼 副教授

发布日间:2017-03-19   浏览次数:8384

姓       名:龚淼

学历学位:工学博士

职       称:副教授

主讲课程:无机与水分析化学、水泵与水泵站

  E-mail :miaogong@hfut.edu.cn


个人简介:

龚淼,男,汉族,1989年7月生,安徽省歙县人。2017年1月进入合肥工业大学土木与水利工程学院市政工程系从事教学和科研工作,主要从事污水厂污泥等有机固废的处理处置及资源化利用方面研究。


2021年12月—目前               合肥工业大学,土木与水利工程学院,市政工程系,副教授

2017年01月—2021年12月   合肥工业大学,土木与水利工程学院,市政工程系,讲师

2015年09月—2016年09月   York University,Lassonde School of Engineering,联合培养博士

2011年09月—2016年12月   河海大学,环境学院,环境科学与工程,工学博士

2007年09月—2011年06月   河海大学,环境学院,给水排水工程,工学学士


研究方向:


(1)有机固废水热转化资源化与产物安全处置;

(2)废弃生物质产氢能源利用;

(3)难降解有机废水的超临界水氧化处理。


招生计划:


欢迎广大给排水、环境工程等相关专业勤奋好学、热爱科研的同学报考硕士研究生,年度招生计划2-3人,请于复试前联系。


承担的科研项目:


(1)国家自然科学基金青年项目:基于氮元素积聚途径阻断的超临界水气化副产物焦油抑制研究2021-2023年,主持。

(2)工业废水及环境治理安徽省重点实验室开放课题项目:巢湖打捞藻泥水热液化制低氮生物油研究,2023-2025年,主持。

(3)合肥工业大学“学术新人提升计划B”项目:市政污泥超临界水气化副产物焦油生成规律及调控机制研究,2021-2022年,主持。

(4)安徽省自然科学基金项目:路易斯酸复合过氧化氢在污泥超临界水反应中促氢抑焦协同机理研究2018-2020年,主持。

(5)合肥工业大学“学术新人提升计划A项目:脱水污泥超临界水气化过程中磷的转化与回收2018-2019年,主持。

(6)合肥工业大学博士专项基金项目:脱水污泥超临界水气化过程中多环芳烃生成与抑制研究,2017-2019年,主持。

(7)企业委托横向项目:高校合同节水技术提升服务与报告编制,2023年,主持。

(8)企业委托横向项目:城市雨水管网混流污水截留井技术提升,2019年,主持。

(9)国家自然科学基金面上项目:含铁污泥前体半均相单原子类Fenton催化剂的可控制备及对水中微量有机物的安全转化, 2021-2024年,参与。

(10)国家自然科学基金面上项目:环境污染物低压电化学转化的系统强化及机制解析, 2019-2022年,参与。

(11)国家自然科学基金面上项目:酚类化合物厌氧互营降解转化机制及调控研究, 2021-2024年,参与。

(12)国家重点研发计划子课题:多源污泥处置过程有组织排放气态污染物的控制技术与装备,2020-2024年,参与。

(13)国家重点研发计划子课题:难降解工业废水强化生物处理工艺技术, 2020-2023年, 参与。

(14)安徽省科技重大专项项目:养殖废水厌氧氨氧化高效脱氮关键装备研发与示范, 2018-2020年, 参与。

(15)国家自然科学基金:脱水污泥超临界水气化利用中C:H:O对反应过程的影响,2013-2016年,参与。

(16)江苏省自然科学基金重点研究专项项目:废弃生物质(污水厂污泥)超临界水气化产氢能源利用,2011-2015年,参与。


获得奖励情况:


(1)2022年,优秀本科毕业设计(论文)指导教师。

(2)2021年,中安同济奖教金。


代表性研究成果:


  1. Gong M*, Jiang W, Wang S, Liu P, Xu F, Wang W, Fan Y. Bio-oil production from hydrothermal liquefaction of algal biomass: Effects of feedstock properties and reaction parameters. Journal of Environmental Chemical Engineering 2024; 12(5):114010. https://doi.org/10.1016/j.jece.2024.114010.

  2. Gong M*, Wang S, Hu J, Fan Y. Effect of CuSO4 on the behavior of nitrogen during supercritical water gasification of microalgal biomass. Journal of Environmental Chemical Engineering 2024; 12(5):113737. https://doi.org/10.1016/j.jece.2024.113737.

  3. Gong M*, Chu H, Xu Q. Influences of reaction parameters and complexation pretreatments on the distribution of phosphorus during hydrothermal carbonization of dewatered sewage sludge. Journal of Water Process Engineering 2024;60:105209. https://doi.org/10.1016/j.jwpe.2024.105209.

  4. Wang Y, Feng A, Li C, Xu Q, He X, Du Y, Gong M*. Combining thermal–alkaline hydrolysis pretreatment with catalytic supercritical water gasification for hydrogen production from sewage sludge. Journal of Water Process Engineering 2024;59:105062. https://doi.org/10.1016/j.jwpe.2024.105062.

  5. Gong M*, Chu H, Feng J, Su Y. Regulating the distribution of phosphorus in sewage sludge hydrothermal carbonization products by complexation pretreatment. Journal of Environmental Chemical Engineering 2024;12:111921. https://doi.org/10.1016/j.jece.2024.111921.

  6. Gong M*, Hu J, Xu Q, Fan Y. Catalytic gasification of Enteromorpha prolifera for hydrogen production in supercritical water. Process Safety and Environmental Protection 2023;175:227-237. https://doi.org/10.1016/j.psep.2023.05.027.

  7. Gong M*, Wang L, Hu J, Feng A, Wang M, Fan Y*. Influence of reaction parameters on the fate of nitrogen during the supercritical water gasification of dewatered sewage sludge. Waste Management 2022;151:28-38. https://doi.org/10.1016/j.wasman.2022.07.034.

  8. Gong M*, Wang M, Wang L, Feng A, Hu J. Degradation of tetracycline hydrochloride in sub- and supercritical water with and without oxidation. Process Safety and Environmental Protectio2022;162:373-383. https://doi.org/10.1016/j.psep.2022.04.030.

  9. Gong M*, Feng A, Wang L, Wang M, Hu J, Fan Y*. Coupling of hydrothermal pretreatment and supercritical water gasification of sewage sludge for hydrogen production. International Journal of Hydrogen Energy 2022;47:17914-17925. https://doi.org/10.1016/j.ijhydene.2022.03.283.

  10. Li Z, Gong M*, Wang M, Feng A, Wang L, Ma P, Yuan S*. Influence of AlCl3 and oxidant catalysts on hydrogen production from the supercritical water gasification of dewatered sewage sludge and model compounds. International Journal of Hydrogen Energy 2021;46:31262-31274. https://doi.org/10.1016/j.ijhydene.2021.07.028.

  11. Gong M*, Li Z, Wang M, Feng A, Wang L, Yuan S*. Effects of Lewis acid on catalyzing gasification of sewage sludge and model compounds in supercritical water. International Journal of Hydrogen Energy 2021;46:9008-9018. https://doi.org/10.1016/j.ijhydene.2020.12.207.

  12. Zhang HW, Zhang RH, Ling Z, Li WY, Yan YJ, Gong M*, Ma JY*. Partial oxidation of phenolic wastewater using NaOH and Ni addition for hydrogen production and phenolics degradation in supercritical water. Separation and Purification Technology 2021;268:118685. https://doi.org/10.1016/j.seppur.2021.118685.

  13. Fan Y, Fonseca FG, Gong M, Hoffmann A, Hornung U, Dahmen N*. Energy valorization of integrating lipid extraction and hydrothermal liquefaction of lipid-extracted sewage sludge. Journal of Cleaner Production 2021;285:124895. https://doi.org/10.1016/j.jclepro.2020.124895.

  14. Zhang H*, Gong M, Ding L, Su Y. Energy recovery and phosphorus phase behaviour from catalytic gasification of cyanobacterial biomass in supercritical water. Biomass and Bioenergy 2020;134:105477. https://doi.org/10.1016/j.biombioe.2020.105477.

  15. Gong M*, Wang Y, Fan Y, Zhu W, Zhang H, Su Y. Polycyclic aromatic hydrocarbon formation during the gasification of sewage sludge in sub- and supercritical water: Effect of reaction parameters and reaction pathways. Waste Management 2018;72:287-295. https://doi.org/10.1016/j.wasman.2017.11.024.

  16. Gong M, Nanda S, Romero MJ, Zhu W, Kozinski JA*. Subcritical and supercritical water gasification of humic acid as a model compound of humic substances in sewage sludge. The Journal of Supercritical Fluids 2017;119:130-138. https://doi.org/10.1016/j.supflu.2016.08.018.

  17. Gong M, Nanda S, Hunter HN, Zhu W, Dalai AK, Kozinski JA*. Lewis acid catalyzed gasification of humic acid in supercritical water. Catalysis Today 2017;291:13-23. https://doi.org/10.1016/j.cattod.2017.02.017.

  18. Gong M, Zhu W*, Zhang HW, Su Y, Fan YJ. Polycyclic aromatic hydrocarbon formation from gasification of sewage sludge in supercritical water: The concentration distribution and effect of sludge properties. The Journal of Supercritical Fluids 2016;113:112-118. http://dx.doi.org/10.1016/j.supflu.2016.03.021.

  19. Gong M, Zhu W*, Fan YJ, Zhang HW, Su Y. Influence of the reactant carbon–hydrogen–oxygen composition on the key products of the direct gasification of dewatered sewage sludge in supercritical water. Bioresource Technology 2016;208:81-86. http://dx.doi.org/10.1016/j.biortech.2016.02.070.

  20. Gong M, Zhu W*, Zhang HW, Ma Q, Su Y, Fan YJ. Influence of NaOH and Ni catalysts on hydrogen production from the supercritical water gasification of dewatered sewage sludge. International Journal of Hydrogen Energy 2014;39:19947-19954. http://dx.doi.org/10.1016/j.ijhydene.2014.10.051.

  21. Gong M, Zhu W*, Xu ZR, Zhang HW, Yang HP. Influence of sludge properties on the direct gasification of dewatered sewage sludge in supercritical water. Renewable Energy 2014;66:605-611. http://dx.doi.org/10.1016/j.renene.2014.01.006.